1.什么是量化投资?怎么理解量化?
量化投资,简单说就是利用计算机技术和数学模型去实现投资策略的过程。根据上面的定义,理解它的话,只要记住3个关键词:
1、数学模型:需要数学公式或模型进行计算;
2、计算机技术:用计算机来进行自动化交易;
3、投资策略:将这种方法形成一种惯用投资策略。
2.量化投资是什么如何做量化投资?
量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
1·量化选股 量化选股就是采用数量的方法判断某个公司是否值得买入的行为。根据某个方法,如果该公司满足了该方法的条件,则放入股票池,如果不满足,则从股票池中剔除。
量化选股的方法有很多种,总的来说,可以分为公司估值法、趋势法和资金法三大类 2·量化择时 股市的可预测性问题与有效市场假说密切相关。如果有效市场理论或有效市场假说成立,股票价格充分反映了所有相关的信息,价格变化服从随机游走,股票价格的预测则毫无意义。
众多的研究发现我国股市的指数收益中,存在经典线性相关之外的非线性相关,从而拒绝了随机游走的假设,指出股价的波动不是完全随机的,它貌似随机、杂乱,但在其复杂表面的背后,却隐藏着确定性的机制,因此存在可预测成分。 3·股指期货 股指期货套利是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限,不同(但相近)类别股票指数合约交易,以赚取差价的行为,股指期货套利主要分为期现套利和跨期套利两种。
股指期货套利的研究主要包括现货构建、套利定价、保证金管理、冲击成本、成分股调整等内容。 。
3.量化投资是什么意思?
量化投资是一种操作方法或操作理念,与其他各种“非量化”的方法并列。
量化也可以采取择时、趋势跟踪、超跌、强弱对冲等等投资模型。区别仅在于,量化投资会使用量化的行情和走势来进行买卖点决策,而不是传统的图形式行情。
量化投资是很广泛的一个概念,可以这么说,只要你不是简单地拍脑袋、或者是听消息进行的投资行为都可以叫量化投资,是不是瞬间没有了高大上的感觉?:) 最常见的,你通过MACD指标顶背离、底背离进行交易,也是量化投资,因为MACD指标是有严格数学公式计算出来的。同样,你根据财务指标选股,构建股票组合也是量化投资,因为你的决策基本是基本面数据; 这些都很“老土”,那么来点新的,通过多因子模型构建投资组合、然后每天用程序进行风险测算并自动调仓,用算法交易完成调仓动作的执行(比如一次性买200万股,总不能一单下去吧),这够“高大上”了吧,前提是你得有一套复杂而完善的系统支持。
4.量化投资的主要方法和前沿进展
量化投资是通过计算机对金融大数据进行量化分析的基础上产生交易决策机制。
设计金融数学和计算机的知识和技术,主要有人工智能、数据挖掘、小波分析、支持向量机、分形理论和随机过程这几种。1.人工智能 人工智能(Artificial Intelligence,AI)是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。
人工智能将涉及计算机科学、心理学、哲学和语言学等学科,可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,还要考虑形象思维、灵感思维才能促进人工智能的突破性发展,数学常被认为是多种学科的基础科学,因此人工智能学科也必须借用数学工具。
数学不仅在标准逻辑、模糊数学等范围发挥作用,进入人工智能学科后也能促进其得到更快的发展。金融投资是一项复杂的、综合了各种知识与技术的学科,对智能的要求非常高。
所以人工智能的很多技术可以用于量化投资分析中,包括专家系统、机器学习、神经网络、遗传算法等。2.数据挖掘 数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。
与数据挖掘相近的同义词有数据融合、数据分析和决策支持等。在量化投资中,数据挖掘的主要技术包括关联分析、分类/预测、聚类分析等。
关联分析是研究两个或两个以上变量的取值之间存在某种规律性。例如,研究股票的某些因子发生变化后,对未来一段时间股价之间的关联关系。
关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。
一般用支持度和可信度两个阈值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。
分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。
预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。
聚类就是利用数据的相似性判断出数据的聚合程度,使得同一个类别中的数据尽可能相似,不同类别的数据尽可能相异。3.小波分析 小波(Wavelet)这一术语,顾名思义,小波就是小的波形。
所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与傅里叶变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了傅里叶变换的困难问题,成为继傅里叶变换以来在科学方法上的重大突破,因此也有人把小波变换称为数学显微镜。
小波分析在量化投资中的主要作用是进行波形处理。任何投资品种的走势都可以看做是一种波形,其中包含了很多噪音信号。
利用小波分析,可以进行波形的去噪、重构、诊断、识别等,从而实现对未来走势的判断。4.支持向量机 支持向量机(Support Vector Machine,SVM)方法是通过一个非线性映射,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题,简单地说,就是升维和线性化。
升维就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起维数灾难,因而人们很少问津。但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归)。
一般的升维都会带来计算的复杂化,SVM方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了维数灾难。这一切要归功于核函数的展开和计算理论。
正因为有这个优势,使得SVM特别适合于进行有关分类和预测问题的处理,这就使得它在量化投资中有了很大的用武之地。5.分形理论 被誉为大自然的几何学的分形理论(Fractal),是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。
它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态、结构、信息、功能、时间、能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而极大地拓展了研究视野。
自相似原则和迭代生成原则是分形理论的重要原则。它表。
5.量化交易该如何入门
如果你想量化交易快速入门。
十行代码带你量化交易入门 - JoinQuant,文章以简单的实例介绍了在聚宽做量化交易最核心的流程——策略编写、策略回测、建立模拟、发送信号,绝对是量化交易极速入门教程。如果你想要更多的学习资源。
量化课堂 - JoinQuant,量化课堂里提供了编程,数学,策略实例,统计研究,金融市场等量化相关的知识,尤其是在量化核心的数理方面,质量用心,业界难觅。社区干货遴选与整理(持续进行中)- JoinQuant,上百篇的聚宽社区好文,从心得技巧到策略分享,从机器学习到股指套利,可谓是成吨的量化交易干货。
如果你想找好策略或你有好策略。
策略擂台 - JoinQuant,旨在发现好策略,发现好宽客,聚宽将助其实现其价值,寻求合作共赢的机会,让人人真正地成为靠策略赚钱的宽客。
另外,策略擂台目前可以免费订阅牛人的策略信号,跟着交易,躺着赚钱不是梦。我了解到的最厉害的,用户跟策略半年多,6万变到12万。